
A Perfect Class of Context-Sensitive Timed
Languages

D. Bhave1, V. Dave1, S. N. Krishna1, R. Phawade1, and A. Trivedi1,2

1 IIT Bombay and 2 CU Boulder

Abstract. Perfect languages—a term coined by Esparza, Ganty, and
Majumdar—are the classes of languages that are closed under Boolean
operations and enjoy decidable emptiness problem. Perfect languages
form the basis for decidable automata-theoretic model-checking for the
respective class of models. Regular languages and visibly pushdown
languages are paradigmatic examples of perfect languages. Alur and Dill
initiated the language-theoretic study of timed languages and introduced
timed automata capturing a timed analog of regular languages. However,
unlike their untimed counterparts, timed regular languages are not perfect.
Alur, Fix, and Henzinger later discovered a perfect subclass of timed
languages recognized by event-clock automata. Since then, a number of
perfect subclasses of timed context-free languages, such as event-clock
visibly pushdown languages, have been proposed. There exist examples
of perfect languages even beyond context-free languages:—La Torre,
Madhusudan, and Parlato characterized first perfect class of context-
sensitive languages via multistack visibly pushdown automata with an
explicit bound on number of stages where in each stage at most one
stack is used. In this paper we extend their work for timed languages by
characterizing a perfect subclass of timed context-sensitive languages and
provide a logical characterization for this class of timed languages.

1 Introduction

A class C of languages is called perfect [9] if it is closed under Boolean operations
and permits algorithmic emptiness-checking. Perfect languages are the key ingre-
dient for the Vardi-Wolper recipe for automata-theoretic model-checking:—given
a system specification S and a system implementation M as languages in C, the
model-checking involves deciding the emptiness of the language M∩ ¬S ∈ C.
The class of (ω-)regular languages is a well-known class of perfect languages,
while other classes of languages such as context-free languages (CFLs) or context-
sensitive languages (CSLs) are, in general, not perfect. CFLs are not perfect since
they are not closed under intersection and complementation, although emptiness
is decidable.On the other hand, CSLs are closed under Boolean operations but
emptiness, in general, is undecidable for CSLs [6].

Alur and Madhusudan [4] discovered a perfect subclass of CFLs, called visibly
pushdown languages (VPLs), characterized by visibly pushdown automata that
operate over words that dictate the stack operations. This notion is formalized by

2 Bhave, Dave, Krishna, Phawade, and Trivedi

giving an explicit partition of the alphabet into three disjoint sets of call, return,
and internal symbols and the visibly pushdown automata must push one symbol
to stack while reading a call symbol, and must pop one symbol (given stack is
non-empty) while reading a return symbol, and must not touch the stack while
reading an internal symbol. This visibility enables closure of these automata
under all of the Boolean operations, while retaining the decidable emptiness
property. Building upon this work, La Torre, Madhusudan, and Parlato [10]
introduced a perfect class of CSLs, called multistack visibly pushdown languages
(MVPLs), recognized by visibly pushdown automata with multiple stacks (and
call-return symbols for each stack) where the number of switches between various
stacks for popping-purposes is bounded.

Example 1. L = {anbn : n ≥ 0} is a VPL with a as call and b as return symbol for
the unique stack, whereas L′ = {an1am2 bn1 bm2 : n,m ≥ 0} is a MVPL considering
ai and bi as call and return symbols, respectively, for stack-i where i ∈ {1, 2}.
Finally, L′′ = {anbncn : n ≥ 0} is neither VPL nor MVPL for any partition of
alphabets as call and respectively alphabets of various stacks.

In this paper we introduce a timed extension of this context-sensitive language
and study language-theoretic properties of the class in [13]. We characterize
a perfect subclass of timed context-sensitive languages and provide a logical
characterization for this class of timed languages.

Quest for Perfect Timed Languages. Alur and Dill [2] initiated automata-
theoretic study of timed languages and characterized the class of timed-regular
languages as the languages defined by timed automata. Unlike untimed regular
languages, Alur and Dill showed that timed regular languages are not perfect as
they are not closed under complementation. However, the emptiness of timed
automata is a decidable using a technique known as region-construction. To
overcome the limitation of timed automata for model-checking, Alur, Fix, and
Henzinger introduced a perfect class of timed languages called the event-clock
automata [3] (ECA)that achieves the closure under Boolean operations by making
clock resets visible—the reset of each clock variable is determined by a fixed class
of events and hence visible just by looking at the input word. The decidability of
the emptiness for ECA follows from the decidability of regular timed languages.

Two of the well-known models for context-free timed languages include recur-
sive timed automata (RTAs) [14] and dense-time pushdown automata (dtPDAs) [1].
RTAs generalize recursive state machines with clock variables, while dtPDAs gen-
eralize pushdown automata with clocks and stack with variable ages. In general,
the emptiness problem for the RTA in undecidable, however [14] characterizes
classes of RTA with decidable emptiness problem. However, without any further
restrictions, such as event-clock or visible stack, the languages captured by these
classes are not perfect, since they strictly generalize both timed regular languages
and CFLs. Tang and Ogawa in [15] proposed a first perfect timed context-free lan-
guage class characterized by event-clock visibly pushdown automata (ECVPA) that
generalized both ECA and VPA. For the proposed model they showed determiniz-
ability as well as closure under Boolean operations, and proved the decidability
of the emptiness problem. However, ECVPAs, unlike dtPDAs, do not support

A Perfect Class of Timed Context-Sensitive Languages 3

l0

start

l1 l2

l3

l4 l5
a, push1($)

a, push1(α)

b, push2($)

b, push2(β)

c, xa ≥ 1, pop1(α)

c, pop1($) ∈[2, 2]

c, pop1(α)∈ [0, 2]
c, pop1($) ∈[2, 2]

d, pop2(β)

d, pop2($) ∈[4, 4]

Fig. 1. Dense-time Multistack Visibly Pushdown Automata used in Example 2

pushing the clocks on the stack. We proposed [7] a generalization of ECVPA
called dense-time visibly pushdown automata (dtVPA), that are strictly more
expressive than ECVPA as they support stack with variable ages (like dtPDA)
and showed that dtVPA characterize a perfect timed context-free language.

Contributions. We study a class of timed context-sensitive languages called
dense-time multistack visibly pushdown languages (dtMVPLs), characterized
by dense-time visibly pushdown multistack automata (dtMVPA), that generalize
MVPLs with multiple stacks with ages as shown in the following example.

Example 2. Consider the timed language whose untimed component is of the
form {aybzcydz | y, z ≥ 1} with the critical timing restrictions among various
symbols in the following manner. The first c must appear after 1 time-unit of
last a, the first d must appear within 3 time-unit after last b, and finally the
last b must appear within 2 time units of the beginning and last d must appear
precisely at 4 time unit. This language is accepted by a dtMVPA with two stacks
shown in Figure 1. Let a and c (b and d, resp.) be call and return symbols for the
first (second, resp.) stack. Stack alphabets for first stack is Γ 1 = {α, $} and for
second stack is Γ 2 = {β, $}. In the figure a clock xa measures the time since the
occurrence of last a, while constraints pop(γ) ∈ I checks if the age of the popped
symbol is in a given interval I. The correctness of the model is easy to verify.

In this paper we show dtMVPLs are closed under Boolean operations and enjoy
decidable emptiness problem. Although, the emptiness problem for restrictions
of context sensitive languages has been studied extensively [5,8,13,12,11], ours
is the first attempt to formalize perfect dense-time context-sensitive languages.
We will also give a logical characterization of this class of languages. We believe
that dtMVPLs provide an expressive yet decidable model-checking framework
for concurrent time-critical software systems (See Appendix A for an example).

The paper is organized as follows. We begin by introducing dense-time visibly
pushdown multistack automata in the next section. In Section 3 we show closure
under Boolean operations for this model, followed by logical characterization in
Section 4. Due to lack of space, the proof for the decidability of emptiness is
deferred to the Appendix.

4 Bhave, Dave, Krishna, Phawade, and Trivedi

2 Dense-Time Visibly Pushdown Multistack Automata

We assume that the reader is comfortable with standard concepts from automata
theory (such as context-free languages, pushdown automata, MSO logic), con-
cepts from timed automata (such as clocks, event clocks, clock constraints, and
valuations), and visibly pushdown automata. Due to space limitation, we only
give a very brief introduction of required concepts in this section, and for a
detailed background on these concepts we refer the reader to [2,3,4].

A finite timed word over Σ is a sequence (a1, t1), (a2, t2), . . . , (an, tn) ∈
(Σ×R≥0)∗ such that ti ≤ ti+1 for all 1 ≤ i ≤ n − 1. Alternatively, we can
represent timed words as tuple (〈a1, . . . , an〉, 〈t1, . . . , tn〉). We use both of these
formats depending on technical convenience. We represent the set of finite timed
words over Σ by TΣ∗. Before we introduce our model, we recall the definitions
of event-clock automata and visibly pushdown automata.

2.1 Preliminaries

Event-clock automata (ECA) [3] are a determinizable subclass of timed au-
tomata [2] that for every action a ∈ Σ implicitly associate two clocks xa and
ya, where the “recorder” clock xa records the time of the last occurrence of
action a, and the “predictor” clock ya predicts the time of the next occurrence
of action a. Hence, event-clock automata do not permit explicit reset of clocks
and it is implicitly governed by the input timed word. This property makes ECA
determinizable and closed under all Boolean operations.

Notice that since clock resets are “visible” in input timed word, the clock
valuations after reading a prefix of the word is also determined by the timed word.
For example, for a timed word w = (a1, t1), (a2, t2), . . . , (an, tn), the value of the
event clock xa at position j is tj − ti where i is the largest position preceding j
where an action a occurred. If no a has occurred before the jth position, then
the value of xa is undefined denoted by a special symbol `. Similarly, the value
of ya at position j of w is undefined if symbol a does not occur in w after the
jth position. Otherwise, it is tk − tj where k is the first occurrence of a after j.

We write C for the set of all event clocks and we use R`>0 for the set R>0∪{`}.
Formally, the clock valuation after reading j-th prefix of the input timed word
w, νwj : C 7→ R`>0, is defined in the following way: νwj (xq) = tj−ti if there exists
an 0≤i<j such that ai = q and ak 6= q for all i<k<j, otherwise νwj (xq) = `
(undefined). Similarly, νwj (yq) = tm − tj if there is j<m such that am = q and
al 6= q for all j<l<m, otherwise νwj (yq) =`. A clock constraint over C is a
boolean combination of constraints of the form z ∼ c where z ∈ C, c ∈ N and
∼∈ {≤,≥}. Given a clock constraint z ∼ c over C, we write νwi |= (z ∼ c) to
denote if νwj (z) ∼ c. For any boolean combination ϕ, νwi |= ϕ is defined in an
obvious way: if ϕ = ϕ1 ∧ ϕ2, then νwi |= ϕ iff νwi |= ϕ1 and νwi |= ϕ2. Likewise,
the other boolean combinations are defined.

Definition 3. An event clock automaton is a tuple A = (L,Σ,L0, F, E) where
L is a set of finite locations, Σ is a finite alphabet, L0 ∈ L is the set of initial

A Perfect Class of Timed Context-Sensitive Languages 5

locations, F ∈ L is the set of final locations, and E is a finite set of edges of the
form (`, `′, a, ϕ) where `, `′ are locations, a ∈ Σ, and ϕ is a clock constraint.

The class of languages accepted by event-clock automata are closed under boolean
operations with decidable emptiness property [3].

Visibly pushdown automata [4] are a determinizable subclass of pushdown
automata that operate over words that dictate the stack operations. This notion
is formalized by giving an explicit partition of the alphabet into three disjoint
sets of call, return, and internal symbols and the visibly pushdown automata
must push one symbol to stack while reading a call symbol, and must pop one
symbol (given stack is non-empty) while reading a return symbol, and must not
touch the stack while reading the internal symbol.

Definition 4. A visibly pushdown alphabet is a tuple Σ = 〈Σc, Σr, Σint〉 where
Σ is partitioned into a call alphabet Σc, a return alphabet Σr, and an internal
alphabet Σint. A visibly pushdown automata(VPA) over Σ = 〈Σc, Σr, Σint〉 is a
tuple (L,Σ, Γ, L0, δ, F) where L is a finite set of locations including a set L0 ⊆ L
of initial locations, Γ is a finite stack alphabet with special end-of-stack symbol
⊥, ∆ ⊆ (L×Σc×L×(Γ\⊥)) ∪ (L×Σr×Γ×L) ∪ (L×Σint×L) is the transition
relation, and F ⊆ L is final locations.

The class of languages accepted by visibly pushdown automata are closed under
boolean operations with decidable emptiness property [4].

2.2 Dense-Time Visibly Pushdown Multistack Automata(dtMVPA)

We introduce the dense-time visibly pushdown automata as an event-clock
automaton equipped with multiple (say n ≥ 1) timed stacks along with a visibly
pushdown alphabet Σ = 〈Σh

c , Σ
h
r , Σ

h
int〉nh=1 where Σi

x ∩ Σj
x = ∅ for i 6= j, and

x ∈ {c, r, int}. Due to space limitation and notational convenience, we assume
that the partitioning function is one-to-one, i.e. each symbol a ∈ Σh has unique
recorder xa and predictor ya clocks assigned to it. Let Γh be the stack alphabet
of the h-th stack. Let Γ =

⋃n
h=1 Γ

h and let Σh = 〈Σh
c , Σ

h
r , Σ

h
int〉. Let CΣh (or

Ch when Σh is clear) be a finite set of event clocks. Let Φ(Ch) be the set of clock
constraints over Ch and I be the set of intervals.

Definition 5. A dense-time visibly pushdown multistack automata (dtMVPAs)
over 〈Σh

c , Σ
h
r , Σ

h
int〉nh=1 is a tuple (L,Σ, Γ, L0, F,∆=(∆h

c∪∆h
r∪∆h

int)
n
h=1) where

– L is a finite set of locations including a set L0 ⊆ L of initial locations,

– Γh is the finite alphabet of the hth stack with special end-of-stack symbol ⊥h,

– ∆h
c ⊆ (L×Σh

c×Φ(Ch)×L×(Γh\⊥h)) is the set of call transitions,

– ∆h
r ⊆ (L×Σh

r×I×Γh×Φ(Ch)×L) is set of return transitions,

– ∆h
int ⊆ (L×Σh

int×Φ(Ch)×L) is set of internal transitions, and

– F⊆L is the set of final locations.

6 Bhave, Dave, Krishna, Phawade, and Trivedi

Let w = (a0, t0), . . . , (ae, te) be a timed word. A configuration of the dtMVPA is
a tuple (`, νwi , (((γ

1σ1, age(γ1σ1)), . . . , (γnσn, age(γnσn))) where ` is the current
location of the dtMVPA, νwi gives the valuation of all the event clocks at position
i ≤ |w|, γhσh ∈ Γh(Γh)∗ is the content of stack h with γh being the topmost
symbol and σh is the string representing the stack content below γh, while
age(γhσh) is a sequence of real numbers encoding the ages of all the stack symbols
(the time elapsed since each of them was pushed on to the stack). We follow the
assumption that age(⊥h) = 〈`〉 (undefined). If for some string σh ∈ (Γh)∗ we
have that age(σh) = 〈t1, t2, . . . , tg〉 and for τ ∈ R≥0 we write age(σh) + τ for
the sequence 〈t1 + τ, t2 + τ, . . . , tg + τ〉. For a sequence σh = 〈γh1 , . . . , γhg 〉 and a

member γh we write γh :: σh for 〈γh, γh1 , . . . , γhg 〉.
A run of a dtMVPA on w = (a0, t0), . . . , (ae, te) is a sequence of configuratio-

ns (`0, ν
w
0 , (〈⊥1〉, 〈`〉), . . . , (〈⊥n〉, 〈`〉)), (`1, ν

w
1 , ((σ

1
1 , age(σ

1
1)), . . . , (σn1 , age(σ

n
1))),

. . . , (`e+1, ν
w
e+1, (σ

1
e+1, age(σ

1
e+1)), . . . , (σne+1, age(σ

n
e+1)))) where `i ∈ L, `0 ∈ L0,

σhi ∈ (Γh ∪ {⊥h})+, and for each i, 0 ≤ i ≤ e, we have:

– If ai ∈ Σh
c , then there is (`i, ai, ϕ, `i+1, γ

h)∈∆h
c such that νwi |= ϕ. The symbol

γh ∈ Γh\{⊥h} is then pushed onto the stack h, and its age is initialized
to zero, i.e. (σhi+1, age(σ

h
i+1)) = (γh :: σhi , 0 :: (age(σhi) + (ti − ti−1))). All

symbols in all other stacks are unchanged, and age by ti − ti−1.
– If ai ∈ Σh

r , then there is (`i, ai, I, γ
h, ϕ, `i+1) ∈ ∆h

r such that νwi |= ϕ. Also,
σhi = γh :: κ ∈ Γh(Γh)∗ and age(γh) + (ti − ti−1) ∈ I. The symbol γh is
popped from stack h obtaining σhi+1 = κ and age(σhi+1) = age(σhi)+(ti−ti−1).
However, if γh = 〈⊥h〉, then γh is not popped. The contents of all other
stacks remains unchanged, and simply age by (ti − ti−1).

– If ai∈Σh
int, then there is (`i, ai, ϕ, `i+1)∈∆h

int such that νwi � ϕ. In this case
all stacks remain unchanged i.e. σhi =σhi+1, and age(σhi+1)=age(σhi)+(ti−ti−1)
for all 1 ≤ h ≤ n. All symbols in all stacks age by ti − ti−1.

A run ρ of a dtMVPA M is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of M on w. The
language L(M) of a dtMVPA M , is the set of all timed words w accepted by M .

A dtMVPA M = (L,Σ, Γ, L0, F,∆) is said to be deterministic if it has
exactly one start location, and for every configuration and input action ex-
actly one transition is enabled. Formally, we have the following conditions:
for every (`, a, φ1, `

′, γ1), (`, a, φ2, `
′′, γ2) ∈ ∆h

c , φ1 ∧ φ2 is unsatisfiable; for ev-
ery (`, a, I1, γ, φ1, `

′), (`, a, I2, γ, φ2, `
′′) ∈ ∆h

r , either φ1 ∧ φ2 is unsatisfiable or
I1 ∩ I2 = ∅; and for every (`, a, φ1, `

′), (`, a, φ2, `
′) ∈ ∆h

int, φ1 ∧ φ2 is unsatis-
fiable. An ECMVPA is a dtMVPA where the stacks are untimed. A ECMVPA
(L,Σ, Γ, L0, F,∆) is an dtMVPA if I = [0,+∞] for every (`, a, I, γ, φ, `′)∈∆h

r .
Let Σ = 〈Σh

c , Σ
h
r , Σ

h
int〉nh=1be a visibly pushdown alphabet. A context over

Σh = 〈Σh
c , Σ

h
r , Σ

h
int〉 is a timed word in (Σh)∗. The empty word ε is a context.

For ease, we assume in this paper that any context has at least one symbol from Σ.
A round over Σ is a timed word w over Σ of the form w1w2 . . . wn such that each
wh is a context over Σh. A k-round over Σ is a timed word w that can be obtained
as a concatenation of k rounds over Σ. That is, w = u1u2 . . . uk, where each ui

A Perfect Class of Timed Context-Sensitive Languages 7

is a round. Let Round(Σ, k) denote the set of all k-round timed words over Σ.
For any fixed k, a k-round dtMVPA over Σ is a tuple A = (k, L,Σ, Γ, L0, F,∆)
where M = (L,Σ, Γ, L0, F,∆) is a dtMVPA over Σ. The language accepted by
A is L(A) = L(M) ∩Round(Σ, k) and is called k-round dense time multistack
visibly push down language. The class of k-round dense time multistack visibly
push down languages is denoted k-dtMVPL. The set

⋃
k≥1 k-dtMVPL is denoted

bd-dtMVPL, and is the class of dense time multistack visibly push down languages
with a bounded number of rounds. We define k-ECMVPL and bd-ECMVPL in
a similar fashion. Also, we write k-dtMVPA and k-ECMVPA to denote k-round
dtMVPA and k-round ECMVPA. The key result of the paper is the following.

Theorem 6 (A Perfect Timed Context-Sensitive Language). The classes
of languages accepted by k-dtMVPA and k-ECMVPA are perfect:— they are closed
under Boolean operations with decidable emptiness problem.

We sketch key lemmas towards this proof in the following section. As an applica-
tion of this theorem we show Monadic second-order logic characterization of the
languages accepted by k-dtMVPA in Section 4.

3 Proof of Theorem 6

The closure under union and intersection for both k-dtMVPA and k-ECMVPA is
straightforward and is sketched in Appendix B. In order to show closure under
complementation, the main hurdle is to show determinizability of these automata.
We sketch the key ideas required to get determinizability for k-ECMVPA in
Section 3.1 and for k-dtMVPA in Section 3.2. The decidability of the emptiness
problem for k-ECMVPA follows as for every k-ECMVPA, via region construction [3],
one can get an untimed-bisimilar k-MVPA, which has a decidable emptiness [13].
In Section 3.2 we show that for every k-dtMVPA we get an emptiness-preserving
k-ECMVPA and hence this result in combination with previous remark yield
decidability of emptiness for k-dtMVPA.

3.1 Determinizability of k-ECMVPA

For the determinizability proof the key observation is the since the words accepted
by A is a catenation of k rounds, and the stacks (or contexts) do not interfere with
each other, the k-ECMVPA A can be considered as a “composition” of n ECVPA
A1, . . . , An, with stack of each Ai corresponds to i-th stack of the k-ECMVPA. A
has to simulate the n ECVPAs in a round robin fashion for k rounds.

If w ∈ L(A), then w = u1u2 . . . uk, and ui = ui1ui2 . . . uin, where uij is the
jth context in the ith round. Starting in an initial location `11, control is passed
to A1, which runs on u11 and enters location `′11 = `12. Let ν′11 = ν12 be the
values of all clocks after processing u11. At this point of time, A2 runs on u12
starting in location `12, and so on, until An runs on u1n starting in location `1n.
Now first round is over, and u1 is processed. An ends in some location `′1n = `21.
Now A1 starts again in `21 and processes u21. The values of all recorders and

8 Bhave, Dave, Krishna, Phawade, and Trivedi

predictors change according to the time that elapsed during the simulation of
A2, . . . , An. It must be noted that between two consecutive rounds i and i+ 1 of
any Aj , none of the clocks pertaining to Aj get reset; they only reflect the time
that has elapsed since the last round of Aj . This continues for k rounds, until ukn
is processed. Aj processes in order, u1j , u2j , . . . , ukj over (Σj)∗ for 1 ≤ j ≤ n. In
round i, 1 ≤ i ≤ k, each Aj , 1 ≤ j ≤ n− 1, starts in location `ij , runs on uij and
“computes” a location `ij+1. Similarly, An moves from round i to round i+ 1, by
starting in `in, runs on uin and computes a location `i+11. The (i+ 1)th round
begins in this location with A1 running on ui+11. Thus, by stitching together the
locations needed to switch from Aj to Aj+1, we can obtain a simulation of A.

Let uij = (a1j , t
1
ij) . . . (a

last
j , tlastij), where t1ij , . . . , t

last
ij are the time stamps

on reading uij . Let κj = u1j(#1, t
last
1j)u2j(#2, t

last
2j) . . . ukj(#k, t

last
kj). The new

symbols #i help disambiguate Aj processing u1j , . . . , ukj in k rounds. We first
focus on each ECVPA Aj which processes u1j , u2j , . . . , ukj . Let cmax be the
maximum constant used in clock constraints of Σj in the ECMVPA A. Let
I = {[0, 0], [0, 1], . . . , [cmax, cmax], [cmax,∞)} be a set of intervals. A correct
sequence of round switches for Aj with respect to κj is a sequence of pairs Vj =
P1jP2j . . . Pkj , where Phj = ((`hj , Ihj), `

′
hj), 2 ≤ h ≤ k, P1j = ((`1j , ν1j), `

′
1j) and

Ihj ∈ I such that

1. Starting in `1j , with the jth stack containing ⊥j , and an initial valuation
ν1j of all recorders and predictors of Σj , the ECMVPA A processes u1j
and reaches some `′1j with stack content σ2j and clock valuation ν′1j . The
processing of u2j by A then starts at location `2j , and a time t ∈ I2j has
elapsed between the processing of u1j and u2j . Thus, A starts processing u2j
in (`2j , ν2j) where ν2j is the valuation of all recorders and predictors updated
from ν′1j with respect to t. The stack content remains same as σ2j when the
processing of u2j begins.

2. In general, starting in (`hj , νhj), h > 1 with the jth stack containing σhj , and
νhj obtained from νh−1j by updating all recorders and predictors based on
the time interval Ihj that records the time elapse between processing uhj−1
and uhj , A processes uhj and reaches (`′hj , ν

′
hj) with stack content σh+1j . The

processing of uh+1j starts after time t ∈ Ih+1 has elapsed since processing
uhj in a location `h+1j , and stack content being σh+1j .

Lemma 7. (Round Switching Lemma for Aj) Let A = (k, L,Σ, Γ, L0, F,∆) be
a k-ECMVPA. Let w = u1u2 . . . uk with ui = ui1ui2 . . . uin, 1 ≤ i ≤ k. Then we
can construct a ECVPA Aj over Σj ∪ {#1, . . . ,#k} which reaches a location Vj
on reading κj iff Vj is a correct sequence of round switches for Aj.

Proof. Recall that κj is defined by annotating u1ju2j . . . ukj with new symbols
{#1, . . . ,#k} and appropriate time stamps. Let Vj = P1j . . . Pkj be a correct se-
quence of round switches for Aj . Given the k-ECMVPA A = (k, L,Σ, Γ, L0, F,∆)
with w, the ECVPA Aj is constructed by simulating the transitions of A on Σj by
guessing Vj in its initial location. The alphabet of Aj is Σj ∪ {#1, . . . ,#n}, and
hence has event clocks xa, x#i , a ∈ Σj . Whenever Aj reads the #i, the control lo-
cation as well as the valuation of all recorders and predictors are changed according

A Perfect Class of Timed Context-Sensitive Languages 9

to Pi+1j , 1 ≤ i ≤ k−1. On reading #k, Aj enters the location Vj from its current
location `′kj . The locations of Aj are Vj ∪ {(i, `ij , Vj), (i, `ij , Vj ,#), (i, `ij , Vj , a) |
1 ≤ i ≤ k, ` ∈ L, a ∈ Σj , Vj ∈ ((L × I) × L)k},∪((L × I) × L)k, I ∈ I. The set
of initial locations are {(1, `1j , Vj) | Vj ∈ ((L × I) × L)k, I ∈ I}. Starting in
(1, `1j , Vj), Aj processes u1j . When the last symbol a of u1j is read, it enters
a location (1, `′1j , Vj , a). From this location, only #1 transitions are enabled.
On reading #1, we move from (1, `′1j , Vj , a) to a location (2, `2j , Vj ,#), where
P2 = ((`2j , I2j), `

′
2j) and P1 = ((`1j , ν1j), `

′
1j), after checking no time elapse since

a (check xa=0). This ensures that no time is spent in processing #1 after u1j . Now
Aj starts processing u2j starting in location (2, `2j , Vj ,#). From (2, `2j , Vj ,#),
on reading a symbol a ∈ Σj , we check that the time elapse since #1 lies in the
interval I2j (check x#1 ∈ I2j) as given by P2 and so on. When round k is reached,
Aj starts processing in some location (k, `kj , Vj ,#), and reaches (k, `′kj , Vj , a).

When #k is read, Aj enters location Vj . The transitions δj of Aj are given in
Appendix C. It is easy to see that Vj is reached by Aj only when the guessed Vj
in the initial location is a correct sequence of round switches for Aj . ut

While each Vj talks about the correct sequence of round switches, 1 ≤ j ≤ n,
the sequence V1V2 . . . Vn is called a globally correct sequence iff we can stitch
together the individual Vi’s to obtain a complete simulation of A on w by moving
across contexts and rounds. For instance, consider Vj = P1jP2j . . . Pkj and
Vj+1 = P1j+1P2j+1 . . . Pkj+1 for 1 ≤ j ≤ n− 1. Recall that Pij = ((`ij , Iij), `

′
ij)

and Pij+1 = ((`ij+1, Iij+1), `′ij+1) for 1 ≤ i ≤ k. The sequence V1V2 . . . Vn is
globally correct iff `′ij = `ij+1, j ≤ n− 1 and `′in = `i+11 for 1 ≤ i ≤ k.

Lemma 8. Let w = u1u2 . . . uk be a timed word in Round(Σ, k), with A =
(k, L,Σ, Γ, L0, F,∆) being a k-ECMVPA over Σ, and let ui = ui1ui2 . . . uin and
κj be as defined above. Then w ∈ L(A) iff for 1 ≤ j ≤ n, there exists a correct
switching sequence Vj of the ECVPA Aj for κj such that V1V2 . . . Vn is a globally
correct sequence for A with `11 ∈ L0 and `′kn ∈ F .

Proof. The proof essentially shows how one can simulate A by composing the
Aj ’s using a globally correct sequence V1V2 . . . Vn. The idea is to simulate each
Aj one after the other, allowing Aj+1 to begin on uij+1 iff the location reached
`′ij at the end of uij by Aj matches with `ij+1, the proposed starting location
of Aj+1 on uij+1. Lets construct a composition of A1, . . . , An which runs on w,
and accepts w iff there exists a globally correct sequence V1V2 . . . Vn. The initial
locations are of the form (p1, p2, . . . , pn, 1, 1), where the last two entries denote
the current round number and context number and pj is an initial location of Aj .
The transitions ∆ of the composition are defined using the transitions δj of Aj .

In some chosen initial location, we first run A1 updating only the first entry
p1 of the tuple until u11 is completely read. The first entry of the tuple then
has the form p′1 = (1, `′11, V1, a) where a is the last symbol of u11. When A1

reads #1, the current location in the composition is (p′1, p2, . . . , pn, 1, 1). In the
composition of A1, . . . , An, since there are no #’s to be read, we start simulation
of A2 on u12 from (p′1, p2, . . . , pn, 1, 1) iff p2 is (2, `12, V2) such that the `′11 in p1

10 Bhave, Dave, Krishna, Phawade, and Trivedi

is same as the `12 in p2. We then add the transition from (p′1, p2, . . . , pn, 1, 1) to
(p′′1 = (2, `21, V1, a), q, . . . , pn, 1, 2) where q is obtained from p2 by a transition
in A2 on the first symbol of u12. The a in p′′1 is the last symbol of u11 taken
from p′1 = (1, `′11, V1, a), and the `21 in p′′1 is obtained from P21 = ((`21, I21), `′21)
of V1. We continue like this till we reach u1n, the last context in round 1,
and reach some location (s1, s2, . . . , sn−1, p

′
n, 1, 1) with s1 = (2, `21, V1, a1), s2 =

(2, `22, V2, a2), . . . , sn−1 = (2, `2 n−1, Vn−1, an−1) and p′n = (1, `′1n, Vn, an).
Now, to start the second round, that is on u21, we allow the transition from

the above location iff `′1n = `21 and if xa1 ∈ I21 and we start simulating A1 again,
after updating p′n, the context and round number. That is, we have the transition
(s1, . . . , sn−1, p

′
n, 1, n) on the first symbol of u21 to (r, . . . , sn−1, sn, 2, 1) where

sn = (2, `2 n, Vn, an) iff `′1n = `21 and xa1 ∈ I21. Also, r is obtained from s1 by
a transition of A1 on the first symbol of u21. The check xa1 ∈ I21 is consistent
with the check of x#1 ∈ I21 in A1. From (r, . . . , sn−1, sn, 2, 1), the processing of
u21 happens as in A1, and we continue till we finish processing u2n. The same
checks are repeated at the start of each fresh round.

It is clear that we have a run on w in the composition only when we have
a globally correct sequence. On completing ukn, this would lead to a loca-
tion (V1, . . . , Vn−1, Vn, k, n), each Vj obtained from the individual Aj . We de-
fine the accepting locations of the composition to be {(V1, . . . , Vn) | Pkn =
(`′kn, [0,∞)), `′kn ∈ F}. Clearly, whenever there is a run in A on w that ends up
in `′kn ∈ F , we have an accepting run on w in the composition. ut

The key idea of the determinization of k-ECMVPA follows from Lemma 8 and
the determinizability of ECVPA [15]. Details are given in Appendix D.

Theorem 9. k-ECMVPAs are determinizable.

3.2 Determinizability of k-dtMVPA

Given a k-dtMVPAM , we first construct (untiming construction) a k-ECMVPAM ′

and a morphism h such that L(M) = h(L(M ′)). We then use the determinizability
of k-ECMVPA (Theorem 9) to obtain a deterministic k-ECMVPA M ′′ such that
L(M ′) = L(M ′′). We then show how to obtain a k-dtMVPAD from M ′′ preserving
the determinism of M ′′ such that L(D) = h(L(M ′′)) = h(L(M ′)) = L(M).

We give an intuition to the untiming construction, and give formal details
in Appendix E. Each time a symbol is pushed on to a stack (say stack i), we
guess its age (the time interval) at the time of popping the symbol. For instance,
in the dtMVPA M , while pushing a symbol a on a stack, if we guess that the
constraint checked at the time of the pop is < κ for κ ∈ N, then in the ECMVPA
M ′, we push in the stack i, the symbol (a,< κ, first) if this is the first symbol
for which the guessed age is < κ. If < κ has already been guessed as the age for
a symbol pushed earlier, then we push (a,< κ) onto the stack i. The guess <i κ
is remembered in the finite control of the ECMVPA M ′. Thus, for each symbol a
pushed in stack i of the dtMVPAM , we push in stack i of the ECMVPAM ′, either
(a,< κ, first) or (a,< κ) and remember <i κ in the finite control as a set of

A Perfect Class of Timed Context-Sensitive Languages 11

obligations. This information <i κ is retained in the finite control until popping
the symbol (a,< κ, first) from stack i. New symbols <i κ are added as internal
symbols to the ECMVPA M ′. The number of these symbols is finite since we have
finitely many stacks and there is a maximum constant used in age comparisons
of the dtMVPA M . After pushing (a,< κ, first) onto the stack i, we read the
internal symbol <i κ, ensuring no time elapse since the last input symbol. Thus
the event clock x<iκ is reset at the same time as pushing (a,< κ, first) on the
stack. While popping (a,< κ, first), we check that the value of the event clock
x<iκ is less than κ. Constraints of the form > κ are handled similarly. Since
the n stacks do not interfere with each other, this construction (adding extra
symbols <i κ one per stack, retaining these symbols in the finite control until
popping (a,< κ, first) from stack i) can be done for all stacks, mimicking the
timed stack. Note that the language accepted by the dtMVPA M is h(L(M ′)),
where h is the morphism which erases symbols of the form <i κ and >i κ from
L(M ′). This gives an ECMVPA preserving emptiness of the dtMVPA. We can
determinize the ECMVPA M ′ obtaining det(M ′) using Theorem 9. It remains to
eliminate the transitions on the new symbols <i κ and >i κ from det(M ′) and
argue that the resulting machine stays deterministic and accepts L(M).

Theorem 10. k-dtMVPAs have decidable emptiness and are determinizable.

4 Logical Characterization of k-dtMVPA

We consider a timed word w = (a0, t0), (a1, t1), . . . , (am, tm) over alphabet Σ =
〈Σi

c, Σ
i
int, Σ

i
r〉ni=1 as a word structure over the universe U = {1, 2, . . . , |w|} of

positions in the timed word. The predicates in the word structure are Qa(i) for
a ∈ Σ which evaluates to true at position i iff w[i] = a, where w[i] denotes the ith
position of w. Following [10], we use the matching binary relation µj(i, k) which
evaluates to true iff the ith position is a call and the kth position is its matching
return corresponding to the jth stack. We also introduce three predicates Ca, Ba,
and θj capturing the following relations. For an interval I, the predicate Ca(i) ∈ I
evaluates to true on the word structure iff νwi (xa) ∈ I for recorder clock xa. For
an interval I, the predicate Ba(i) ∈ I evaluates to true on the word structure
iff νwi (ya) ∈ I for predictor clock ya. For an interval I, the predicate θj(i) ∈ I
evaluates to true on the word structure iff w[i] ∈ Σj

r , and there is some k < i
such that µj(k, i) evaluates to true and ti − tk ∈ I. The predicate θj(i) measures
the time elapse between position k where a call was made on the stack j, and
position i, its matching return. This time elapse is the age of the symbol pushed
on to the stack during the call at position k. Since position i is the matching
return, this symbol is popped at position i; if the age lies in the interval I, the
predicate evaluates to true. We define MSO(Σ), the MSO logic over Σ, as:

ϕ:=Qa(x) | x∈X | µj(x, y) | Ca(x)∈I | Ba(x)∈I | θj(x)∈I |¬ϕ | ϕ∨ϕ| ∃x.ϕ | ∃X.ϕ

where a∈Σ, xa∈CΣ , x is a first order variable and X is a second order variable.
The models of a formula φ ∈ MSO(Σ) are timed words w over Σ. The

semantics of this logic is standard where first order variables are interpreted

12 Bhave, Dave, Krishna, Phawade, and Trivedi

over positions of w and second order variables over subsets of positions. We
define the language L(ϕ) of an MSO sentence ϕ as the set of all words satisfying
ϕ. Words in Round(Σ, k), for some k rounds, can be captured by an MSO
formula Bdk(ψ). For instance if k = 1, and n stacks, the formula ∃x1.(Qa1(x1) ∧
∀y1(y1 ≤ x1 → Qa1(y1)) ∧ ∃x2.(x1 < x2 ∧ Qa2(x2) ∧ ∀y2(x1 < y2 < x2 →
Qa2(y2)) ∧ . . . ∧ ∃xn(xn−1 < xn ∧Qan(xn) ∧ last(xn) ∧ ∀yn(xn−1 < yn < xn →
Qan(yn))))), where ai ∈ Σi and last(x) denotes x is the last position, captures a
round. This can be extended to capture k-round words. Conjuncting the formula
obtained from a dtMVPA M with Bdk(ψ) accepts only those words which lie in
L(M)∩Round(Σ, k). Likewise, if one considers any MSO formula ζ = ϕ∧Bdk(ψ),
it can be shown that the dtMVPA M constructed for ζ will be a k-dtMVPA. The
two directions, dtMVPA to MSO, as well as MSO to dtMVPA can be handled
using standard techniques, and can be found in Appendix F.

Theorem 11. A language L over Σ is accepted by an k-dtMVPA iff there is a
MSO sentence ϕ over Σ such that L(ϕ) ∩Round(Σ, k) = L.

References

1. Abdulla, P., Atig, M., Stenman, J.: Dense-timed pushdown automata. In: LICS.
pp. 35–44 (2012)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of

timed automata. TCS 211(1-2), 253–273 (1999)
4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory

of Computing. pp. 202–211 (2004)
5. Atig, M.F.: Model-checking of ordered multi-pushdown automata. Logical Methods

in Computer Science 8(3) (2012)
6. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase

structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunika-
tionsforschung 14, 143–172 (1961)

7. Bhave, D., Dave, V., Krishna, S., Phawade, R., Trivedi, A.: A logical characterization
for dense-time visibly pushdown automata. In: LATA. pp. 89–101 (2016)

8. Czerwinski, W., Hofman, P., Lasota, S.: Reachability problem for weak multi-
pushdown automata. In: CONCUR, LNCS, vol. 7454, pp. 53–68. Springer (2012)

9. Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In:
LICS. pp. 285–294. IEEE Computer Society (2012)

10. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS. pp. 161–170 (2007)

11. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In: DLT,
LNCS, vol. 8633, pp. 116–128. Springer International Publishing (2014)

12. La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown
automata. In: MFCS, LNCS, vol. 8634, pp. 377–389. Springer (2014)

13. Salvatore, L., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: LATIN. pp. 96–107 (2010)

14. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: ATVA. LNCS, vol. 6252,
pp. 306–324. Springer-Verlag (September 2010)

15. Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: SOFSEM
2009, LNCS, vol. 5404, pp. 558–569. Springer (2009)

A Perfect Class of Timed Context-Sensitive Languages 13

Appendix

A An Example of Concurrent Time-Critical Systems

In Android operating system every application has a main thread which is by
default responsible for user interface (UI) management and hence can only be
blocked for very short durations. If an application needs to perform blocking
operations or asynchronous tasks which may block thread for longer durations,
it forks additional threads. Android supports event-based architecture for UI
management and inter-thread communication. Java class Looper implements
incoming message queue and message processing loop which reads the next event
in the queue and perform the corresponding action. Main thread maintains
message queue for incoming messages using Looper. Other threads can send
events like Message or Runnable (asynchronous function call) to the Main thread
which are queued for processing. Additional threads may also use Looper and
have their own incoming message queues.

We model such systems using an abstract event-based system architecture
following Maiya et al. 1. In this architecture, multiple processes communicate
with each other using shared events and events are processed in the order of their
arrival. We assume that each process has constant sized queue to store incoming
events. Each process has event processing loop which reads next queued event
and invoke corresponding event handler function. Additionally, events cannot
remain pending in the queue for unbounded time. The age of an event is the
time elapsed since an event is queued. When the age of an event exceeds some
predefined threshold, it is dropped from the incoming event queue. Such condition
is desirable to ensure responsiveness of interactive systems.

We propose formal modeling of such abstract multi-process event based
architecture using dtMVPA. Let P = {P1, P2, . . . , Pn} be the set of processes that
communicate among themselves using a shared set of events E = {e1, e2, . . . , em}.
Each process in P has its own fixed sized queue to store incoming events. Let Qi
be the incoming event queue for process Pi. Any process can send event to any
other process by enqueuing it into receiver’s incoming event queue. Each queued
instance of an event has associated age which increases at the rate of one unit
per unit time. Age is always initialized to zero. An event is dropped from the
queue when its age exceeds some predefined threshold τ , which is assumed to be
the same for all events.

We now describe dtMVPA model for the above architecture. We model k-sized
event queues k-slot circular queues using finite automata control, where contents
of the queue are remembered in the location. Send and receive operations are
captured by introducing additional internal symbols as follows. We use symbol
Sem,i→jk to denote that the process Pi has sent event em to process Pj by

enqueuing it into Qj ’s k
th slot. Likewise, we use symbol Rem,i→jk to denote

1 Maiya, P., Gupta, R., Kanade, A., Majumdar, R.: Partial order reduction for event-
driven multi-threaded programs. In: TACAS. Springer (2016)

14 Bhave, Dave, Krishna, Phawade, and Trivedi

FB a F B a F

a B

a Fa B

a

B

F a F B

a B

a F

a F B

F

B

a Ba

a F

a Ba F aa F

a B

S0 S1

R0

S2

R0 R0

S1 S2

R1 S0

R1

S0

R2

S2

R1

S1

R2 R2

S0 ‖
S1 ‖
S2

R0 ‖
R1 ‖
R2

Process P1 Process P2

Queue Q2

0

1

2

Fig. 2. dtMVPA model for Example 12

that the process Pj has received event em from process Pi by dequeuing it into

Qj ’s k
th slot. Thus, symbols Sem,i→jk and Rem,i→jk always occur in the pair

along the run and the age of the event em at the time of dequeuing is the time
difference between global timestamps of Sem,i→jk and its corresponding Rem,i→jk .
This model permits same event (but different instances) em to be enqueued more
than once. But different instances of em occupy different lots in the queue and
can be easily distinguished using their slot number. This is useful for modeling
applications where different instances of the same type of service requests need to
be distinguished. Although the stack is not used for modeling event queue, each
process Pi has uses its own stack and is modeled using dtVPA. Direct product
automaton of these processes and event queues yields desired dtMVPA.

Example 12. Assume we have only two processes P = {P1, P2} and one event
E = {e}. We assume the queue size k = 3. We use internal symbols Se,1→2

i and

Re,1→2
i where i ∈ {0, 1, 2}, to capture send and receive operations. Figure A

illustrates event processing for events sent from P1 to P2. For brevity we drop
superscript e,1→2 from internal symbols for the further discussion. When P1

sends an event to P2, it is marked by occurrence of any one of symbols S0, S1

or S2. When P2 receives the event, one of the symbols R0, R1 or R2 occur.
Whenever an event is enqueued in the ith slot of the event queue, the occurrence
a symbol Si models this fact. Similarly Ri denotes the fact that an event is
received from ith slot. Event queue of size three is implemented using stackless
event clock automaton. In figure A, automaton Q2 models the circular queue.

A Perfect Class of Timed Context-Sensitive Languages 15

Each of location of Q2 pictorially shows three slot circular queue along with
queue contents. Legends are shown (in red) on the initial location describing
slot numbers and direction of enqueue. Marker F denotes the position of front
pointer from where event is dequeued. Marker B denotes the position of back
pointer. While enqueuing new event, B is first incremented and then new event
is stored. When dequeuing, front element of the queue is read and front pointer
is incremented. Here, processes P1 and P2 simply send and receive an event
respectively, but they can be any arbitrary dtVPA involving stack operations.
We add guard (not shown) yRi

≤ τ? on transition labeled Si. This captures the
requirement that no event waits for more than τ time units in the queue.

B Closure of k-dtMVPA under Boolean operators

Consider the same underlying alphabet Σ = 〈Σi
c, Σ

i
r, Σ

i
int〉ni=1, for two dtMVPA

M1,M2 with stack alphabets Γ1 =
⋃n
i=1 Γ

i
1 and Γ2 =

⋃n
i=1 Γ

i
2 respectively.

Without loss of generality, assume the locations of M1,M2 to be disjoint. Union
then follows simply by taking the union of the (initial and final) locations and
transitions of M1,M2.

For the intersection, we consider the product of Ml = (Ll, Σ, Γl, L
0
l , L

f
l , ∆l),

for l in {1, 2}, where ∆l = (∆i
cl ∪ ∆i

rl ∪ ∆i
intl)

n
i=1, we construct the dtMVPA

M = (L,Σ, Γ, L0, F,∆) with initial locations L0 = {(l01, l02) | l01 ∈ L0
1 and l02 ∈ L0

2},
with final locations F = {(f1, f2) | f1 ∈ Lf1 , f2 ∈ L

f
2} and with stack alphabet

Γ =
⋃n
i=1(Γ i1 × Γ i2), The transition function ∆ = (∆i

c ∪∆i
r ∪∆i

int)
n
i=1, is follows:

1. For a ∈ Σi
c, transition ((q1, q2), a, ϕ1∧ϕ2, (q

′
1, q
′
2), (γ1, γ2)) ∈ ∆i

c iff transition
(q1, a, ϕ1, q

′
1, γ1) is in ∆i

c1 and transition (q2, a, ϕ2, q
′
2, γ2) is in ∆i

c2. The age
of (γ1, γ2) is initialized to 0. The push operations of M1,M2 are synchronized.

2. For a ∈ Σi
r, transition ((q1, q2), a, I1 ∧ I2, (γ1, γ2), ϕ1 ∧ ϕ2, (q

′
1, q
′
2)) ∈ ∆i

r iff
transition (q1, a, I1, γ1, ϕ1, q

′
1) is in ∆i

r1 and transition (q2, a, I2, γ2, ϕ2, q
′
2) is

in ∆i
r2. Note that the age of (γ1, γ2) must satisfy I1 ∧ I2 for popping. The

pop operations of M1,M2 are synchronized.
3. For a ∈ Σi

intl, transition ((q1, q2), a, ϕ1 ∧ ϕ2, (q
′
1, q
′
2)) ∈ ∆i

l iff (q1, a, ϕ1, q
′
1) ∈

∆i
int1 and (q2, a, ϕ2, q

′
2) ∈ ∆i

int2.

It is easy to see that L(M) = L(M1) ∩ L(M2). We thus have By Theorem 6
closure under determinizability which gives us closure under complementation.

Lemma 13. The class of languages characterized by k-dtMVPA are closed under
Boolean operators.

C Details of Lemma 7: Round-Switching Lemma

Lemma 14. (Round Switching Lemma for Aj) Let A = (k, L,Σ, Γ, L0, F,∆) be
a k-ECMVPA. Let w = u1u2 . . . uk with ui = ui1ui2 . . . uin, 1 ≤ i ≤ k. Then we
can construct a ECVPA Aj over Σj ∪ {#1, . . . ,#k} which reaches a location Vj
on reading κj iff Vj is a correct sequence of round switches for Aj.

16 Bhave, Dave, Krishna, Phawade, and Trivedi

Proof. The locations of Aj are Vj ∪ {(i, `ij , Vj), (i, `ij , Vj ,#), (i, `ij , Vj , a) | 1 ≤
i ≤ k, ` ∈ L, a ∈ Σj , Vj ∈ ((L × I) × L)k},∪((L × I) × L)k, I ∈ I. The set of
initial locations are {(1, `1j , Vj) | Vj ∈ ((L × I) × L)k, I ∈ I}. We provide the
details of the transitions of the ECVPA Aj . Formally, the transitions δj of Aj can
be summarized as follows:

– For 2 ≤ h ≤ k, 〈(h− 1, `′h−1j , Vj , a),#h−1, xa = 0, (h, `hj , Vj ,#)〉
if ((`h−1j , Ih−1j), `

′
h−1j) = Ph−1j , and Ph = ((`hj , Ihj), `

′
hj), (After reading

the last symbol a ∈ Σj of uh−1j , Aj reads the symbol #h−1, and checks
xa = 0 to ensure that there is no time elapse in reading #h−1. The location
(h− 1, `′h−1j , Vj , a) signifies that Aj has read the last symbol of uh−1j . The
location (h, `hj , Vj ,#) is entered on reading #h−1.)

– 〈(h, `hj , Vj ,#), a, ϕ ∧ x#h−1
∈ Ihj , (h, `, Vj)〉 if (`hj , a, ϕ, `) ∈ ∆j

int and for
2 ≤ h ≤ k we have ((`hj , Ihj), `

′
hj) = Phj .

– 〈(h, `hj , Vj ,#), a, ϕ∧ x#h−1
∈ Ihj , (h, `, Vj), γ〉 if (`hj , a, ϕ, `, γ) ∈ ∆j

c and for
2 ≤ h ≤ k we have ((`hj , Ihj), `

′
hj) = Phj ,

– 〈(h, `hj , Vj ,#), a, γ, ϕ ∧ x#h−1
∈ Ihj , (h, `, V)〉 if (`hj , a, γ, ϕ, `) ∈ ∆j

r and
((`hj , Ihj), `

′
hj) = Phj , 2 ≤ h ≤ k, (From the location (h, `hj , Vj ,#), Aj starts

reading uhj . To check that the time elapsed between the processing of uh−1j
and uhj in A lies in the interval Thj , we have the constraint x#h−1

∈ Ihj . In
addition, we also check the constraint ϕ that was checked by A while reading
the first symbol a of uhj . The location (h, `hj , Vj) is entered. Aj continues in
this location until uhj is completely read. On reading the last symbol a of
uhj , the location (h, `hj , Vj , a) is entered. Then on reading #h+1, the location
(h+ 1, `h+1j , Vj ,#) is entered. Aj then enters location (h+ 1, `h+1j , Vj) and
starts processing uh+1j and so on.)

– 〈(h, `, Vj), a, ϕ, (h, `′, Vj)〉 if (`, a, ϕ, `′) ∈ ∆j
int

– 〈(h, `, Vj), a, ϕ, (h, `′, Vj , a)〉 if (`, a, ϕ, `′) ∈ ∆j
int

– 〈(h, `, Vj), a, ϕ, (h, `′, Vj), γ〉 if (`, a, ϕ, `′, γ) ∈ ∆j
c

– 〈(h, `, Vj), a, ϕ, (h, `′, Vj , a), γ〉 if (`, a, ϕ, `′, γ) ∈ ∆j
c

– 〈(h, `, Vj), a, γ, ϕ, (h, `′, Vj)〉 if (`, a, γ, ϕ, `′) ∈ ∆j
r

– 〈(h, `, Vj), a, γ, ϕ, (h, `′, Vj , a)〉 if (`, a, γ, ϕ, `′) ∈ ∆j
r (Aj processes uhj in lo-

cation (h, `, Vj). The next location can be either (h, `, Vj) if the symbol a
read is not the last symbol of uhj , or (h, `, Vj , a) if the symbol a read is the
last symbol of uhj .)

– 〈(k, `′kj , Vj , a),#k, xa = 0, Vj〉 if Pkj = ((`kj , Ikj), `
′
kj) (On reading the last

symbol a of ukj , Aj enters location Vj , after correctly processing u1j , . . . , ukj)

The construction is now complete. The correctness of the construction is straight-
forward to verify. ut

A Perfect Class of Timed Context-Sensitive Languages 17

D Details for Theorem 9

We first recall some basic results for the reader’s convenience.

D.1 VPA Determinization

Given a VPA M = (Q,Qin, Γ, δ,QF), the idea in [4] is to do a subset construction.
Let w = w1a1w2a2w3 be a string such that every call in w1, w2, w3 has a matching
return, and a1, a2, a3 are call symbols without matching returns. After reading
w, the deterministic VPA has in its stack the contents (S2, R2, a2)(S1, R1, a1)⊥
and its control state is (S,R). Here, S2 contains all pairs of states (q, q′) such
that starting with q on w2 and an empty stack (contains only ⊥), we reach q′

with stack ⊥. The set of pairs of states S2 is called a summary for w2. Likewise,
S1 is a summary for w1 and S is the summary for w3. Here Ri is the set of states
reachable from the initial state after reading till the end of wi, i = 1, 2 and R is
the set of reachable states obtained on reading w.

After w3, if a call a3 occurs, then (S,R, a3) is pushed on the stack, and
the current state is (S′, R′) where S′ = {(q, q) | q ∈ Q}, while R′ is obtained
by updating R using all transitions for a3. The current control state (S,R) is
updated to (S′, R′) where R′ is all reachable states obtained from R, using all
possible transitions on the current symbol read. The set S′ is obtained as follows:

– On reading an internal symbol, S evolves into S′ where S′ = {(q, q′) |
∃q′′, (q, q′′) ∈ S, (q′′, a, q′) ∈ δ}.

– On reading a call symbol a, (S,R, a) is pushed onto the stack, and the control
state is (S′, R′) where S′ = {(q, q) | q ∈ Q}. On each call, S′ is re-initialized.

– On reading a return symbol a′, let the top of stack be (S1, R1, a). This is
popped. Thus, a and a′ are a matching call-return pair. Let the string read
so far be waw′a′. Clearly, w,w′ are well-nested, or all calls in them have seen
their returns.

For the well-nested string w preceding a, we have S1 consisting of all (q, q′)
such that starting on q on w, we reach q′ with empty stack. Also, S consists of
pairs (q1, q2) that have been obtained since the call symbol a (corresponding
to the return symbol a′) was pushed onto the stack. The set S started out
as {(q1, q1) | q1 ∈ Q} on pushing a, and contains pairs (q1, q2) such that on
reading the well-nested string between a and a′, starting in q1, we reach
q2. The set S is updated to S′ by “stitching” S1 and S as follows: A pair
(q, q′) ∈ S′ if there is some (q, q′′) ∈ S1, and (q′′, a, q1, γ) ∈ δ (the push
transition on a), (q1, q2) ∈ S, and (q2, a

′, γ, q′) ∈ δ (the pop transition on a′).

The set of final locations of the determinized VPA are {(S,R) | R contains a
final state of the starting VPA }, and its initial location is the set of all pairs
(Sin, Rin) where Sin = {(q, q) | q ∈ Q} and Rin is the set of all initial states of
the starting VPA.

18 Bhave, Dave, Krishna, Phawade, and Trivedi

D.2 ECVPA to VPA

We quickly recall the conversion from ECVPA to VPA [15]. For example, a
transition of the form (q, a, xc < 2, q′) in the ECVPA is replaced with the
transitions (q, (a, (c, (0, 0))), q′), (q, (a, (c, (0, 1))), q′), (q, (a, (c, (1, 1))), q′) and
(q, (a, (c, (1, 2))), q′) in the VPA. These transitions are deterministic since the
intervals involved in the alphabet are disjoint. The VPA obtained like this is
determinized as explained above. The resulting VPA is then converted back to a
deterministic ECVPA by reverting to the original alphabet, and translating the
interval alphabet to clock constraints. For instance, the transitions introduced
above in the VPA become (q, a, xc = 0, q′), (q, a, 0 < xc < 1, q′), (q, a, xc = 1, q′)
and (q, a, 1 < xc < 2, q′).

D.3 Proof of Theorem 9

Let A = (k, L,Σ, Γ, L0, F,∆) be the k-ECMVPA and let Aj be the ECVPA on
Σj ∪ {#1,#2, . . . ,#k}. Each Aj is determinizable [15]. Recall from [15] that an
ECVPA Aj is untimed to obtain a VPA ut(Aj) by encoding the clock constraints
of Aj in an extended alphabet. This VPA can be converted back into an ECVPA
ec(ut(Aj)) by using the original alphabet, and replacing the clock constraints.
This construction is such that L(ec(ut(Aj))) = L(Aj) and both steps involved
preserve determinism. Determinization of VPA ut(Aj) is done in the usual way [4].
This gives Det(ut(Aj)). Again, ec(Det(ut(Aj))) converts this back into a ECVPA
by simplifying the alphabet, and writing the clock constraints. The set of locations
remain unchanged in ec(Det(ut(Aj))) and Det(ut(Aj)). This translation also
preserves determinism, hence Bj = ec(Det(ut(Aj))) is a deterministic ECVPA
language equivalent to ECVPA Aj .

The locations of Bj are thus of the form (S,R) where R is the set of all
reachable control states of Aj and S is a set of ordered pairs of states of Aj as
seen in section D.1. On reading κj , the R component of the state reached in Bj
is the set {〈Vj〉 | Vj is a correct round switching sequence of Aj}. Lemmas 7 and
Lemma 8 follow easily using Bj = ec(Det(ut(Aj))) in place of Aj . We now obtain
a deterministic ECMVPA B which simulates B1, . . . , Bn one after the other on
reading w. Given w = u1u2 . . . uk, B invokes B1, . . . , Bn in round robin fashion
for k times : the first time each Bj processes u1j , the second time u2j and so
on till each Bj processes ukj in the last round. Automaton B keeps track in its
finite control, the locations of all the Bj ’s, along with the valuations of all the
recorders and predictors of Σ. It also remembers the current round number and
the current context number in its finite control to ensure a correct round robin
simulation of the Bj ’s. To achieve this, we make use of correct sequence of round
switches of nondeterministic Ajs.

Let Bj = (Qj , Σj ∪ {#1, . . . ,#k}, Γ j , Qj0, F j , δj). Locations of Bj have the
form (Sj , Rj). The initial state of Bj is the set consisting of all (Sin, Rin) where
Sin = {(q, q) | q is a state of Aj}, and Rin is the set of all initial states of Aj .
Recall that a final state of Aj is Vj if Vj is a correct switching sequence of Aj . Thus,

A Perfect Class of Timed Context-Sensitive Languages 19

an accepting run in Bj goes through states (Sin, Rin), (S1, R1) . . . , (Sn, Rn), 〈Vj〉
where 〈Vj〉 is a set that contains a correct switching sequence Vj of Aj .

Locations of B have the form (q1, . . . , qn, i, j) where qy is a location of By,
i, j are respectively the current round and context. The initial location of B is
(q11, q12, . . . , q1n, 1, 1) where q1j is the initial location of Bj . We define the set of
final locations of B to be (〈V1〉, . . . 〈Vn−1〉〈Sn, Rn〉) where Rn is a set containing
a tuple of the form (k, l′kn, Vn, a) and l′kn is in F , the set of final locations of A.

We now explain the transitions ∆ of B, using the transitions δj of Bj .
Recall that B processes w = u1u2 . . . uk, with ui = ui1ui2...uin. Let uij =
(a1j , t

1
ij) . . . (a

last
j , tlastij), where t1ij , . . . , t

last
ij are the time stamps on reading uij .

Let κj = u1j(#1, t
last
1j)u2j(#2, t

last
2j) . . . ukj(#k, t

last
kj). Each Bj processes κj .

Let η = (qi1, . . . , qij−1, qij , qi−1,j+1, . . . , qi−1n, i, j) and let
ζ = (qi1, . . . , qij−1, q, qi−1,j+1, . . . , qi−1n, i, j), where qij is the location reached
by Bj after it has completed its round i, that is after processing uij .

1. Simulation of Bj when j < n and the round is i < k.
– 〈η, a, ϕ, ζ〉 ∈ ∆j

int iff (qij , a, ϕ, q) ∈ δjint
– 〈η, a, ϕ, ζ, γ〉 ∈ ∆j

c iff (qij , a, ϕ, γ, q) ∈ δjc
– 〈η, a, γ, ϕ, ζ〉 ∈ ∆j

r iff (qij , a, γ, ϕ, q) ∈ δjr
2. Change context from j to j + 1 in round i > 1. This is the time when Bj

completes processing uij , reads a #i in the location q′ij = (S′ij , R
′
ij) which has

been computed at the end of uij . Here, R′ij is the set of all reachable states
of Aj after i rounds. Recall that these are states of the form (i, `′ij , Vj , a),
where Vj is a correct switching sequence of Aj and a is the last symbol of uij .
The location qi−1j+1 = (Si−1j+1, Ri−1j+1) of Bj+1 at this point is such that
Ri−1j+1 is the set of states reached at the end of simulating ui−1j+1#i−1,
which is the set of states of the form (i, `ij+1, Vj+1, a) (refer the transition
from p′11 to p′′11 in Lemma 8 when changing context. We remember the last
symbol of the current string uij and use it to check the time elapse on starting
ui+1j .)
The location of B at this time is thus (. . . , q′ij , qi−1j+1, . . .). Thanks to Lemma
8, we know that for each (i, `′ij , Vj , a) ∈ R′ij , there is a (i, `ij+1, Vj+1) ∈
Ri−1j+1 with `′ij = `ij+1. That is, VjVj+1 is part of a globally correct sequence
for A. We denote this fact by writing L′ij = Li−1j+1. When L′ij = Lij+1,
B starts processing uij+1 by running Bj+1 on the first symbol of uij+1

from location (. . . , q′ij , qi−1j+1, . . . , i, j). Component location qi−1j+1 will be
replaced based on a transition of Bj+1, and q′ij is also replaced with qij
to take care of the transition on #i in Bj , where qij = (Sij , Rij) with Rij
containing all locations of the form 〈i, `ij , Vj , a〉, where a is the last symbol
of uij (refer the transition from p′11 to p′′11 in Lemma 8)

– 〈(. . . , q′ij , qi−1j+1, . . . , i, j), a, ϕ, (. . . , qij , q, . . . , i, j + 1)〉 ∈ ∆j+1
int iff

(qi−1j+1, a, ϕ, q) ∈ δj+1
int

– 〈(. . . , q′ij , qi−1j+1, . . . , i, j), a, ϕ, (. . . , qij , q, . . . , i, j + 1), γ〉 ∈ ∆j+1
c iff

(qi−1j+1, a, ϕ, q, γ) ∈ δj+1
c

– 〈(. . . , q′ij , qi−1j+1, . . . , i, j), a, γ, ϕ, (. . . , qij , q, . . . , i, j + 1)〉 ∈ ∆j+1
r iff

(qi−1j+1, a, γ, ϕ, q) ∈ δj+1
r

20 Bhave, Dave, Krishna, Phawade, and Trivedi

Transitions of Bj+1 continue on (. . . , qij , q, . . . , i, j + 1) replacing only the
(j + 1)th entry until uij+1 is read completely.
When i = 1, we have q′1j = (S′1j , R

′
1j) which has been computed at the end

of u1j , where R′1j is the set of all reachable states of Aj after the first round.
The initial location was (q1, . . . , qn, 1, 1). The location reached now looks like
(q′11, . . . , q

′
1j , qj+1, . . . , qn, 1, 1), with qj+1 = (Sj+1, Rj+1), where Rj+1 is all

possible initial locations of Aj+1. We start processing Bj+1 on u1j+1 when
L′1j = L1j+1, as seen above.

3. Change context from n to 1 on consecutive rounds i and i+1 < k. This is the
time when Bn completes processing uin and B1 starts processing ui+11. As
seen above, the location q′in = (S′in, R

′
in) is reached in Bn after uin with R′in

the set of locations of the form (i, `′in, Vn, an) where an is the last symbol of uin.
Also, B1 is in location qi+11 = (Si+11, Ri+11) after processing ui1#i, where
Ri+11 is the set of all locations of the form (i+ 1, `i+11, V1, a1), and a1 is the
last symbol of ui1. The location of B at this time is thus (qi+11, qi+12, . . . , q

′
in).

Thanks to Lemma 8, we know that for each (i, `′in, Vn, an) ∈ R′in, there is a
(i+ 1, `i+11, V1, a1) ∈ R′i+11 with `′in = `i+11. That is, Vn and V1 are part of
some globally correct sequence for A. We denote this fact by Li+11 = L′in.
When Li+11 = L′in, automata B starts running B1 on ui+11 from the location
(qi+11, . . . , q

′
in, i, n), state qi+11 will be replaced based on a transition of B1.

We also replace q′in with qin as it happens in Bn when the #i is read. Initial
state is qin = (Sin, Rin) where Rin has all locations of the form (i, `in, Vn, an).
– 〈(qi+11, . . . , q

′
in, i, n), a, ϕ, (q, . . . , qin, i+ 1, 1)〉 ∈ ∆1

int iff (qi+11, a, ϕ, q) ∈
δ1int

– 〈(qi+11, . . . , q
′
in, i, n), a, ϕ, (q, . . . , qin, i+1, 1), γ〉 ∈ ∆1

c iff (qi+11, a, ϕ, q, γ) ∈
δ1c

– 〈(qi+11, . . . , q
′
in, i, n), a, γ, ϕ, (q, . . . , qin, i+1, 1)〉 ∈ ∆1

c iff (qi+11, a, γ, ϕ, q) ∈
δ1r

Transitions of B1 continue on (q, . . . , qin, i+1, 1) replacing only the first entry
until ui+11 is read completely.

4. Simulation of Bn in round k. This happens when B has completed reading
ukn−1 by simulating Bn−1 on ukn−1. The location of B at this point of time
is (qk1, qk2, . . . , q

′
kn−1, qk−1n), where qkj = (Skj , Rkj) with Rkj is the set of

locations 〈Vj〉. q′kn−1 = (Skn−1, Rkn−1) where Rkn−1 is the set of all locations
of the form 〈k, `′kn−1, Vn−1, a〉 where a is the last symbol of ukn−1 and
qk−1n = (Sk−1n, Rk−1n) with Rk−1n is the set of all locations (k, `kn, Vn, b).
Again, thanks to Lemma 8, we know that for each (k, `′kn−1, Vn−1, a) ∈ Rkn−1,
there is a (k, `kn, Vn, b) ∈ Rk−1n such that `′kn−1 = `kn. We denote this with
L′kn−1 = Lk−1n.
When Lkn−1 = Lk−1n, automata B starts running Bn on ukn from the
location (qk1, qk2, . . . , q

′
kn−1, qk−1n), and qk−1n is replaced by a transition of

Bn, while q′kn−1 is replaced with qkn−1 = (Skn−1, Rkn−1) to simulate the
transition on #k by Bn−1, where Rkn−1 = 〈Vn−1〉.
Let η = (qk1, qk2, . . . , q

′
kn−1, qk−1n, k−1, n) and ζ = (qk1, qk2, . . . , qkn−1, q, k, n),

– 〈η, a, ϕ, ζ〉 ∈ ∆n
int iff (qk−1n, a, ϕ, q) ∈ δnint,

– 〈η, a, ϕ, ζ, γ〉 ∈ ∆n
c iff (qk−1n, a, ϕ, q, γ) ∈ δnc ,

A Perfect Class of Timed Context-Sensitive Languages 21

– 〈η, a, γ, ϕ, ζ〉 ∈ ∆n
r iff (qk−1n, a, γ, ϕ, q) ∈ δnr .

Transitions of Bn continue on (qk1, qk2, . . . , qkn−1, q, k, n) replacing only the
nth entry based on transitions of Bn. When Bn completes reading ukn, it
reaches the location q′kn = (S′kn, R

′
kn) where R′kn is the set of all locations of

the form (k, `′kn, Vn, a), where a is the last symbol of ukn. Since there are no
more symbols to be read, the location reached is q′kn = (S′kn, R

′
kn). Unlike the

earlier rounds where we processed #i on Bj in parallel (after completing uij)
and started Bj+1 on the first symbol of uij+1, when Bn finishes ukn, there is
no processing that remains. Hence, we are at q′kn = (S′kn, R

′
kn) at the end of

the kth round of Bn. This is accepting iff there exists `′kn ∈ R′kn such that
`′kn ∈ F . The state reached in B is then (〈V1〉, 〈V2〉, . . . , 〈Vn−1〉, q′kn). Note
that we have ensured the following:
(a) 〈Vj〉 contains a correct switching sequence Vj for Aj , and we ensure that

VjVj+1 is part of a correct global sequence, for all 1 ≤ j ≤ n− 2,
(b) We have the condition L′kn−1 = Lk−1n, ensuring the continuity between
〈Vn−1〉 and the start of Bn in the kth round.

(c) At the end of ukn, we reach in Bn, q′kn = (S′kn, R
′
kn) such that `′kn ∈ R′kn

such that `′kn ∈ F .

The above conditions ensure correctness of local switching and a globally correct
sequence in A. Clearly, w ∈ L(B) iff w ∈ L(A) iff there is some globally correct
sequence V1 . . . Vn.

E Details of Theorem 10

We now describe the untiming-the-stack construction to obtain from a k-dtMVPA
M over Σ, an k-ECMVPA M ′ over an extended alphabet Σ′ such that L(M) =
h(L(M ′)) where h is a homomorphism h : Σ′×R≥0 → Σ×R≥0 defined as
h(a, t) = (a, t) for a∈Σ and h(a, t) = ε for a/∈Σ. Our construction builds upon
that of [7].

Let κ be the maximum constant used in the k-dtMVPA M while checking the
age of a popped symbol in any of the stacks. Let us first consider a call transition
(l, a, ϕ, l′, γ) ∈ ∆i

c encountered in M . To construct an ECMVPA M ′ from M , we
guess the interval used in the return transition when γ is popped from ith stack.
Assume the guess is an interval of the form [0, κ). This amounts to checking that
the age of γ at the time of popping is <κ. In M ′, the control switches from l to
a special location (l′a,<κ, {<iκ}), and the symbol (γ,<κ, first)2 is pushed onto
the ith stack.

Let Z∼i = {∼i c | c∈N, c ≤ k,∼ ∈{<,≤, >,≥}}. Let Σ′i = Σi ∪ Z∼i
be the extended alphabet for transitions on the ith stack. All symbols of
Z∼i are internal symbols in M ′ i.e. Σ′i =

{
Σi
c, Σ

i
int ∪ Z∼i , Σi

r

}
. At location

(l′a,<κ, {<iκ}), the new symbol <iκ is read and we have the following tran-
sition : ((l′a,<κ, {<iκ}), <iκ, xa = 0, (l′, {<iκ})), which results in resetting the
event recorder x<iκ corresponding to the new symbol <iκ. The constraint xa = 0

2 It is sufficient to push (γ,<κ, first) in stack i, since the stack number is known as i

22 Bhave, Dave, Krishna, Phawade, and Trivedi

ensures that no time is elapsed by the new transition. The information <iκ
is retained in the control state until (γ,<κ, first) is popped from ith stack.
At (l′, {<iκ})), we continue the simulation of M from l′. Assume that we have
another push operation on ith stack at l′ of the form (l′, b, ψ, q, β). In M ′, from
(l′, {<iκ}), we first guess the constraint that will be checked when β will be
popped from the ith stack. If the guessed constraint is again <iκ, then control
switches from (l′, {<iκ}) to (q, {<iκ}), and (β,<κ,−) is pushed onto the ith stack
and simulation continues from (q, {<iκ}). However, if the guessed pop constraint
is <iζ for ζ 6= κ, then control switches from (l′, {<iκ}) to (qb,<ζ , {<iκ,<iζ}) on
reading b. The new obligation <iζ is also remembered in the control state. From
(qb,<ζ , {<iκ,<iζ}), we read the new symbol <iζ which resets the event recorder
x<iζ and control switches to (q, {<iκ,<iζ}), pushing (β,<ζ, first) on to the
ith stack. The idea thus is to keep the obligation <iκ alive in the control state
until γ is popped; the value of x<iκ at the time of the pop determines whether
the pop is successful or not. If a further <iκ constraint is encountered while
the obligation <iκ is already alive, then we do not reset the event clock x<iκ.
The x<iκ is reset only at the next call transition after (γ,<κ, first) is popped
from ith stack , when <iκ is again guessed. The case when the guessed popped
constraint is of the form >iκ is similar. In this case, each time the guess is made,
we reset the event recorder x>iκ at the time of the push. If the age of a symbol
pushed later is >κ, so will be the age of a symbol pushed earlier. In this case,
the obligation >κ is remembered only in the stack and not in the finite control.
Handling guesses of the form ≥ ζ∧ ≤ κ is similar, and we combine the ideas
discussed above.

Now consider a return transition (l, a, I, γ, ϕ, l′) ∈ ∆i
r in M . In M ′, we are

at some control state (l, P). On reading a, we check the top of the ith stack
symbol in M ′. It is of the form (γ, S, first) or (γ, S,−), where S is a singleton
set of the form {<κ} or {>ζ}, or a set of the form {<κ,>ζ}3. Consider the case
when the top of the ith stack symbol is (γ, {<κ,>ζ}, first). In M ′, on reading
a, the control switches from (l, P) to (l′, P ′) for P ′ = P\{<κ} iff the guard ϕ
evaluates to true, the interval I is (ζ, κ) (this validates our guess made at the
time of push) and the value of clock x<iκ is <κ, and the value of clock x>iζ

is >ζ. Note that the third component first says that there are no symbols
in ith stack below (γ, {<κ,>ζ}, first) whose pop constraint is <κ. Hence, we
can remove the obligation <iκ from P in the control state. If the top of stack
symbol was (γ, {<κ,>ζ},−), then we know that the pop constraint <κ is still
alive for ith stack . That is, there is some stack symbol below (γ, {<κ,>ζ},−)
of the form (β, S, first) such that <κ∈S. In this case, we keep P unchanged
and control switches to (l′, P). Processing another jth stack continues exactly as
above; the set P contains <i κ,≤j η, and so on depending on what constraints
are remembered per stack. Note that the set P in (l, P) only contains constraints
of the form <i κ or ≤i κ for each ith stack, since we do not remember > ζ
constraints in the finite control.

3 This last case happens when the age checked lies between ζ and κ

A Perfect Class of Timed Context-Sensitive Languages 23

E.1 Reduction from dtMVPA to ECMVPA

We now give the formal construction. Let Z∼ =
⋃n
i=1 Z

∼
i and and let S∼ = {∼

c | c∈N, c ≤ k,∼ ∈{<,≤, >,≥,=}}. Given k-dtMVPA M = (L,Σ, Γ, L0, F,∆)
with max constant κ used in return transitions of all stacks, we construct k-
ECMVPA M ′ = (L′, Σ′, Γ ′, L′0, F ′, ∆′) where L′=(L×2Z

∼
) ∪ (LΣi×S∼×2Z

∼
) ∪

(LΣi×S∼×S∼×2Z
∼

), Σ′i = (Σi
c, Σ

i
int ∪ Z∼i , Σi

r) and Γ ′i = Γi×2S
∼×{first,−},

L0 = {(l0, ∅) | l0∈L0}, and F = {(lf , ∅) | lf∈F}. The transitions ∆′ are defined
as follows:
Call Transitions. For every (l, a, ϕ, l′, γ)∈∆i

c, we have the following classes of
transitions in M ′.

1. The first class of transitions correspond to the guessed pop constraint being
<κ. In the first case, <κ is alive, and hence there is no need to reset the
clock x<iκ. In the second case, the obligation <κ is fresh and hence it is
remembered as first in the ith stack , and the clock x<iκ is reset.

((l, P), a, ϕ, (l′, P), (γ, {<κ},−))∈∆i′
c if<iκ∈P

((l, P), a, ϕ, (l′a,<κ, P
′), (γ, {<κ}, first))∈∆i′

c if<iκ/∈P and P ′ = P ∪ {<iκ}

((l′a,<κ, P
′), <iκ, xa = 0, (l′, P ′))∈∆i′

int

2. The second class of transitions correspond to the case when the guessed pop
constraint is >κ. The clock x>iκ is reset, and obligation is stored in ith stack.

((l, P), a, ϕ, (l′a,>κ, P), (γ, {>κ},−))∈∆i′
c and ((l′a,>κ, P), >iκ, xa=0, (l′, P))∈∆i′

int

3. Finally the following transitions consider the case when the guessed pop
constraint is >ζ and <κ. Depending on whether <κ is alive or not, we have
two cases. If alive, then we simply reset the clock x>iζ and remember both
the obligations in ith stack . If <κ is fresh, then we reset both clocks x>iζ

and x<iκ and remember both obligations in ith stack , and <iκ in the state.

((l, P), a, ϕ, (l′a,<κ,>ζ , P
′), (γ, {<κ,>ζ}, first))∈∆i′

c if<iκ/∈P, P ′=P ∪ {<iκ,>iζ}

((l′a,<κ,>ζ , P
′), >iζ, xa = 0, (l′a,<κ, P

′))∈∆i′
int

((l, P), a, ϕ, (l′a,>ζ , P), (γ, {<κ,>ζ},−))∈∆i′
c if<iκ∈P

Internal Transitions. For every (l, a, ϕ, l′)∈∆i
int we have the set of transitions

((l, P), a, ϕ, (l′, P))∈∆i′
int.

Return Transitions. For every (l, a, I, γ, ϕ, l′)∈∆i
r, we have following transitions

in ∆i′
r.

1. ((l, P), a, (γ, {<κ,>ζ},−), ϕ ∧ x<iκ<κ ∧ x>iζ>ζ, (l
′, P)) if I = (ζ, κ).

2. ((l, P), a, (γ, {<κ,>ζ}, first), ϕ ∧ x<iκ<κ ∧ x>iζ>ζ, (l
′, P ′))

where P ′ = P\{<iκ}, if I = (ζ, κ).
3. ((l, P), a, (γ, {<κ},−), ϕ ∧ x<iκ<κ, (l

′, P)) if I = [0, κ).
4. ((l, P), a, (γ, {<κ}, first), ϕ∧x<iκ<κ, (l

′, P ′)) with P ′=P\{<iκ} if I=[0, κ).

24 Bhave, Dave, Krishna, Phawade, and Trivedi

5. ((l, P), a, (γ, {>ζ},−), ϕ ∧ x>iζ>ζ, (l
′, P)) if I = (ζ,∞).

For the pop to be successful in M ′, the guess made at the time of the push
must be correct, and indeed at the time of the pop, the age must match the
constraint. The control state (lf , P) is reached in M ′ on reading a word w′ iff
M accepts a string w and reaches lf . Accepting locations of M ′ are of the form
(lf , P) for P ⊆ Z∼. Let w = (a1, t1) . . . (ai, ti) . . . (an, tn)∈L(M). If ai ∈ Σi

c, we
have in L(M ′), a string Ti between (ai, ti) and (ai+1, ti+1), with |Ti| ≤ 2, and Ti
is a timed word of the form (b1i, ti)(b2i, ti) or (b1i, ti). The time stamp ti remains
unchanged, and either b1i is <i κ or ≤i κ or b1i is >i ζ, or b1i is >i ζ and b2i
is one of <i κ or ≤i κ for some κ, ζ ≤ k. This follows from the 3 kinds of call
transitions in M ′.

Theorem 15. The emptiness problem for k-dtMVPA is decidable.

(Proof sketch.) In the construction above, it can shown by inducting on the length
of words accepted that h(L(M ′)) = L(M). Thus, L(M ′) 6= ∅ iff L(M) 6= ∅. If
M is a k-dtMVPA, then M ′ is a k-ECMVPA. Since M ′ is a k-ECMVPA, we can
apply the standard region construction of event clock automata [3] to obtain a
k-MVPA, which has a decidable emptiness [13].

Determinizability of k-dtMVPA. Next, we focus on the determinizability of
k−dtMVPA. Consider a k-dtMVPAM = (L,Σ, Γ, L0, F,∆) and the corresponding
k-ECMVPA M ′ = (L′, Σ′, Γ ′, L′0, F ′, ∆′) as constructed in section E.1. From
Theorem 9 we know that M ′ is determinizable. Let Det(M ′) be the determinized
automaton such that L(Det(M ′)) = L(M ′). That is, L(M) = h(L(Det(M ′))).
By construction of M ′, we know that the new symbols introduced in Σ′ are Z∼

(Σ′i = Σi ∪ Z∼i for each ith stack) and (i) no time elapse happens on reading
symbols from Z∼i , and (ii) no stack operations happen on reading symbols of Z∼i .
Consider any transition in Det(M ′) involving the new symbols. Since Det(M ′) is
deterministic, let (s1, α, ϕ, s2) be the unique transition on α∈Z∼i . In the following,
we eliminate these transitions on Z∼i preserving the language accepted by M
and the determinism of det(M ′). In doing so, we will construct a k-dtMVPA M ′′

which is deterministic, and which preserves the language of M . We now analyze
various types for α∈Z∼i .

1. Assume that α is of the form >iζ. Let (s1, α, ϕ, s2) be the unique transition
on α∈Z∼i . By construction of M ′ (and hence det(M ′)), we know that ϕ is
xa = 0 for some a∈Σi. We also know that in Det(M ′), there is a unique
transition (s0, a, ψ, s1, (γ, α,−)) preceding (s1, α, ϕ, s2). Since (s1, α, ϕ, s2) is
a no time elapse transition, and does not touch any stack, we can combine
the two transitions from s0 to s1 and s1 to s2 to obtain the call transition
(s0, a, ψ, s2, γ) for ith stack . This eliminates transition on >iζ.

2. Assume that α is of the form <iκ. Let (s1, α, ϕ, s2) be the unique transition
on α∈Z∼i . We also know that ϕ is xa = 0 for some a∈Σi. From M ′, we also
know that in Det(M ′), there is a unique transition of one of the following
forms preceding (s1, α, ϕ, s2):

A Perfect Class of Timed Context-Sensitive Languages 25

(a) (s0, a, ψ, s1, (γ, α,−)), (b) (s0, a, ψ, s1, (γ, α, first)), or
(c) (s0, >iζ, ϕ, s1) where it is preceded by (s′0, a, ψ, s0, (γ, {α,>ζ}, X)) for

X∈{first,−}.
Since (s1, α, ϕ, s2) is a no time elapse transition, and does not touch the stack,
we can combine two transitions from s0 to s1 (cases (a), (b)) and s1 to s2 to
obtain the call transition (s0, a, ψ, s2, (γ, α,−)) or (s0, a, ψ, s2, (γ, α, first)).
This eliminates the transition on <iκ.
In case of transition (c), we first eliminate the local transition on >iζ obtaining
(s′0, a, ψ, s1, γ). This can then be combined with (s1, α, ϕ, s2) to obtain the
call transitions (s′0, a, ψ, s2, γ). We have eliminated local transitions on <iκ.

Merging transitions as done here does not affect transitions on any Σi as they
simply eliminate the newly added transitions on Σ′i \Σi. Recall that checking
constraints on recorders x<iκ and x>iζ were required during return transitions.
We now modify the pop operations in Det(M ′) as follows: Return transitions
have the following forms, and in all of these, ϕ is a constraint checked on the
clocks of CΣi in M during return:

– transitions (s, a, (γ, {<κ}, X), ϕ∧x<iκ<κ, s
′) for X∈{−, first} are modified

to (s, a, [0, κ), γ, ϕ, s′);
– transitions (s, a, (γ, {<κ,>ζ}, X), ϕ∧x>iζ>ζ∧x<iκ<κ, s

′) forX∈{−, first}
are modified to (s, a, (ζ, κ), γ, ϕ, s′); and

– transition (s, a, (γ, {>ζ},−), ϕ ∧ x>iζ>ζ, s
′) are modified to the transitions

(s, a, (ζ,∞), γ, ϕ, s′).

Now it is straightforward to verify that the k-dtMVPA M ′′ obtained from the
k-ECVPA det(M ′) is deterministic. Also, since we have only eliminated symbols
of Z∼, we have L(M ′′) = L(M) and h(L(M ′′)) = L(det(M ′)). This completes
the proof of determinizability of k-dtMVPA.

F Details of Theorem 11

Here, we give the details of the translations from dtMVPA to MSO and conversely.
A technical point is regarding the projection operation : in general, it is known
that event clock automata (hence dtMVPA) are not closed under projections.
However, we need to handle projections while quantifying out variables in the
MSO to dtMVPA construction. We do this by working on Quasi dtMVPA where
the underlying alphabet Σ is partitioned into finitely many buckets P1, . . . , Pk
via a ranking function ρ : Σ → N. All symbols in a Pj are then “equivalent”
: we assign one event recorder and one event predictor per Pi. This helps in
arguing the correctness of the constructed dtMVPA from an MSO formula, while
projecting out variables. In Section F.1, we show the equi-expressiveness of quasi
dtMVPA and dtMVPA which allows us to complete the logical characterization.

– Logic to automata. We first show that the language accepted by an MSO
formula ϕ over Σ = 〈Σi

c, Σ
i
int, Σ

i
r〉ni=1, L(ϕ) is accepted by a dtMVPA. Let

26 Bhave, Dave, Krishna, Phawade, and Trivedi

Z = (x1, . . . , xm, X1, . . . , Xn) be the free variables in ϕ. As usual, we work

on the extended alphabet Σ′ = 〈Σi′
c, Σ

i′
int, Σ

i′
r〉ni=0 where

Σi′
s=Σ

i
s×(V al : Z → {0, 1}m+n),

for s ∈ {c, int, r}. A word w′ over Σ′ encodes a word over Σ along with

the valuation of all first order and second order variables. Thus Σi′ consists
of all symbols (a, v) where a ∈ Σi is such that v(x) = 1 means that x is
assigned the position i of a in the word w, while v(x) = 0 means that x
is not assigned the position of a in w. Similarly, v(X) = 1 means that the
position i of a in w belongs to the set X. Next we use quasi-event clocks for
Σ′ by assigning suitable ranking function. Quasi dtMVPA are equiexpressive
to dtMVPA as explained in Section F.1. We partition each Σi′ such that for
a fixed a ∈ Σi, all symbols of the form (a, d1, . . . , dm+n) and di ∈ {0, 1} lie
in the same partition (a determines their partition). Let ρ′ : Σ′ → N be the
ranking function of Σ′ wrt above partitioning scheme.
Let L(ψ) be the set of all words w′ over Σ′ such that the underlying word w
over Σ satisfies formula ψ along with the valuation V al. Structurally inducting
over ψ, we show that L(ψ) is accepted by a dtMVPA. The cases Qa(x), µj(x, y)
are exactly as in [10]. We only discuss the predicate θj here. Consider the
atomic formula θj(x) ∈ I. To handle this, we build a dtMVPA that keeps
pushing symbols (a, v) onto the stack j whenever a ∈ Σj

c , initializing the age
to 0 on push. It keeps popping the stack on reading return symbols (a′, v′),
a′ ∈ Σj

r , and checks whether v′(x) = 1 and age(a′, v′) ∈ I. It accepts on
finding such a pop. The check v′(x) = 1 ensures that this is the matching
return of the call made at position x. The check age(a′, v′) ∈ I confirms
that the age of this symbol pushed at position x is indeed in the interval I.
Negations, conjunctions and disjunctions follow from the closure properties
of dtMVPA.
Existential quantifications correspond to projection by excluding the cho-
sen variable from the valuation and renaming the alphabet Σ′. Let M
be a dtMVPA constructed for ϕ(x1, . . . , xn, X1, . . . , Xm) over Σ′. Consider
∃xi.ϕ(x1, . . . , xn, X1, . . . , Xm) for some first order variable xi. Let Zi =
(x1, . . . , xi−1, xi+1, . . . , xn, X1, . . . , Xm) by removing xi from Z. We simply
work on the alphabet Σ′↓i = Σ × (V al : Zi → {0, 1}m+n−1). Note that
Σ′↓i is partitioned exactly in the same way as Σ′. For a fixed a ∈ Σ, all
symbols (a, d1, . . . , dm+n−1) for di ∈ {0, 1} lie in the same partition. Thus,
Σ′ and Σ′↓i have exactly the same number of partitions, namely |Σ|. Thus,
an event clock xa = x(a,d1,...,dm+n) used in M can be used the same way
while constructing the automaton for ∃xi.ϕ(x1, . . . , xn, X1, . . . , Xm). The
case of ∃Xi.ϕ(x1, . . . , xn, X1, . . . , Xm) is similar. Hence we obtain in all cases,
a dtMVPA that accepts L(ψ) when ψ is an MSO sentence.

– Automata to logic. Consider a dtMVPA M = (L,Σ, Γ, L0, F,∆). For each
stack i, let Ciγ denote a second order variable which collects all positions

where γ is pushed in stack i. Similarly, let Riγ be a second order variable
which collects all positions where γ is popped from stack i. Let Xli be a

A Perfect Class of Timed Context-Sensitive Languages 27

second order variable which collects all positions where the location is li in a
run. Let C, R and L respectively be the set of these variables.
The MSO formula encoding runs of the dtMVPA is: ∃L ∃C ∃R ϕ(L, C,R).
We assert that the starting position must belong to Xl for some l ∈ L0.
Successive positions must be connected by an appropriate transition. To
complete the reduction we list these constraints.

• For call transitions (`i, a, ψ, `j , γ) ∈ ∆h
c , for positions x, y, assert

X`i(x) ∧X`j (y) ∧Qa(x) ∧ Chγ (x)∧∧
b∈Σh

((∧
(xb∈I)∈ψ

Cb(x) ∈ I
)
∧
(∧
(yb∈I)∈ψ

Bb(x) ∈ I
))
.

• For return transitions (`i, a, I, γ, ψ, `j) ∈ ∆h
r for positions x and y we

assert that

X`i(x) ∧X`j (y) ∧Qa(x) ∧Rhγ(x) ∧ θh(x)∈I∧∧
b∈Σh

((∧
(xb∈I)∈ψ

Cb(x)∈I
)
∧
(∧
(yb∈I)∈ψ

Bb(x)∈I
))
.

• Finally, for internal transitions (`i, a, ψ, `j) ∈ ∆h
int for positions x and y

we assert

X`i(x)∧X`j (y)∧Qa(x)∧
∧
b∈Σh

((∧
(xb∈I)∈ψ

Cb(x) ∈ I
)
∧
(∧
(yb∈I)∈ψ

Bb(x) ∈ I
))
.

We also assert that the last position of the word belongs to some Xl such
that there is a transition (call, return, local) from l to an accepting location.
The encoding of all 3 kinds of transitions is as above. Additionally, we assert
that corresponding call and return positions should match, i.e.

∀x∀y µj(x, y)⇒
∨

γ∈Γ j\⊥j

Cjγ(x) ∧Rjγ(y).

F.1 Remaining part: Quasi dtMVPA

A quasi k-dtMVPA is a weaker form of k-dtMVPA where more than one input
symbols share the same event clock. Let the finite input alphabet Σ be partitioned
into finitely many classes via a ranking function ρ : Σ → N giving rise to
finitely many partitions P1, . . . , Pk of Σ where Pi = {a ∈ Σ | ρ(a) = i}. The
event recorder xPi

records the time elapsed since the last occurrence of some
action in Pi, while the event predictor yPi

predicts the time required for any
action of Pi to occur. Notice that since clock resets are “visible” in input timed
word, the clock valuations after reading a prefix of the word is also determined
by the timed word.

28 Bhave, Dave, Krishna, Phawade, and Trivedi

Definition 16 (Quasi k-dtMVPA). A quasi dense-time visibly pushdown mul-
tistack automata over Σ=

{
Σi
c, Σ

i
r, Σ

i
int

}n
i=1

is a tuple M=(L,Σ, ρ, Γ, L0, F,∆)

where L is a finite set of locations including a set L0 ⊆ L of initial locations, ρ is
the ranking function, Γ is the stack alphabet and F⊆L is a set of final locations.

Lemma 17. Quasi k-dtMVPA and k-dtMVPA are effectively equivalent.

Proof. Let A = (LA, ΣA, ρA, ΓA, L
0
A, FA, ∆A) be a given quasi k-dtMVPA. Let

PA = {p0, p1, . . . , pn−1} be the set of partitions induced by ρA. If PA contains a
partition having more than one alphabet, without the loss of generality, we assume
it to be partition p0. We now describe a construction to create another quasi-
event clock automaton B = (LB , ΣB , ρB , ΓB , L

0
B , FB , ∆B) such that number of

partitions with more than one alphabet is one less than that of A. Additionally this
construction also ensures L(A) = L(B). Repeated application of such construction
will eventually yield quasi-event clock automaton having only singleton set
partitions and which is language equivalent to A.

Let x0 and y0 be the event recording and predicting clocks for a partition p0
in A. Crucial observation here is along any run of A, value of an event clock x0
matches with an event recording clock xa if most recent occurring alphabet of p0
is a and a is (say) allowed to have its own event clock. Using this observation, we
assign an event clock xa in B to alphabet a and replace x0 in the guard by xa
whenever above condition holds. Similarly, in case of event predicting clocks, if the
current position along the run is i and first future position where some alphabet
b in p0 occurs is j (j > i), the value of event predicting clock y0 at position i
matches with yb. Again we assign an event clock yb in B to b and replace y0
by yb in the guards when above condition is known to hold. However whether
such condition will hold or not in the future is decided using nondeterministic
guess. This necessitates some additional mechanism to verify the correctness of
the guess. When x0 or y0 is ` in A, any replacement xa or yb is valid.

We remember our above choices about the replacement of event recording and
event predicting clocks in the locations of B along with additional information
which helps us to verify correctness of our event predicting clock guess. The
locations of B, LB = LA × p0 × 2Σ × p0 is four component tuple, where second
component remembers last occurring alphabet of p0, third component is the set
of alphabets that are permitted to occur on the outgoing transitions from current
location and fourth component is the alphabet of p0 that is predicted to occur in
the future. Initial locations of B are L0

B = L0
A×p0×2Σ×p0 and the final locations

are FB = FA×p0×2Σ×p0. Partition function fB is such that it assigns separate
partitions for each alphabet in p0 while keeping rest of partitions unchanged.
Let g = (x0 ∈ Ix0) ∧ (y0 ∈ Iy0)

∧n−1
i=1 (xi ∈ Ixi) ∧ (yi ∈ Iyi) be the guard condition.

Then the guard g[x0/xa, y0/yb] = (xa ∈ Ix0)∧ (yb ∈ Iy0)
∧n−1
i=1 (xi ∈ Ixi)∧ (yi ∈ Iyi)

denotes the guard expression obtained by replacing event clock x0 by xa and

y0 by yb. The transitions of B are given as EB = {〈`, a, α, b〉 d−−−−−−−−−→
g[x0/xa,y0/yb]

〈`′, a′, α′, b′〉} such that all following conditions hold.

(c.1) (`, d, g, `′) ∈ EA and d ∈ α and

A Perfect Class of Timed Context-Sensitive Languages 29

(c.2) if d ∈ p0 then a′ = d, otherwise a′ = a and
(c.3) either α′ = {b}, b′ ∈ p0 or α′ = Σ − p0, b′ = b

Condition (c.1) enforces that only permissible outgoing transitions can be taken.
Condition (c.2) updates the event recording component in the location whenever
it sees any of the alphabet from p0. While, Condition (c.3) covers two cases.
First case is applicable when b occurs at immediate next position in the run. In
this case, we must enforce next transition by setting third component to b. Run
cannot proceed if any alphabet other than b occurs. This amounts to checking
that our guess about b is correct. Second case covers the possibility that b does
occur in the future but not immediately next. Then all alphabets in Σ other
than those in p0 are permitted to occur.

Valid homomorphisms for quasi k-dtMVPA Let Σ =
{
Σi
c, Σ

i
r, Σ

i
int

}n
i=1

and

Π =
{
Πi
c, Π

i
r, Π

i
int

}n
i=1

be the set of alphabets of two k-dtMVPAs M1 =

(L1, Σ, ρ1, Γ1, L
0
1, F1, ∆1) and M2 = (L2, Π, ρ2, Γ2, L

0
2, F2, ∆2) respectively. A

homomorphism h : Σ 7→ Π is said to valid iff following conditions are satisfied

– h preserves stack mapping i.e. a ∈ Σi
c iff h(a) ∈ Πi

c, b ∈ Σi
r iff h(b) ∈ Πi

r and
c ∈ Σi

int iff h(c) ∈ Πi
int

– h preserves event clock partition i.e. ρ1(a) = ρ2(h(a)) for all a ∈ Σ.

	A Perfect Class of Context-Sensitive Timed Languages

